Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper presents a comprehensive numerical study aimed at defining the conditions for which Cross-Laminated Timber (CLT) floor diaphragms of platform-type CLT buildings can be assumed rigid in linear seismic analyses. Numerical analyses are conducted on a regular CLT archetype within a framework of parametric analyses, in which different geometrical and mechanical parameters including the stiffness of the floor panel-to-panel connections, the stiffness of the floor-to-wall connections, the floor span, the distance between two consecutive shear-walls, the lateral stiffness of the shear-walls, and the number of storeys are varied. The conditions to ensure a rigid diaphragm behaviour are derived by calculating the discrepancies in terms of floor displacements, distribution of lateral forces in the shear-walls, and fundamental vibration period of the structure, between numerical models where the floor is modelled with its actual deformability and as rigid. The discrepancies are compared with threshold values given in Eurocode 8 and used to derive the conditions for which CLT floor diaphragms can be assumed rigid. The study reveals that the behaviour of the floor tends toward the rigid diaphragm condition by increasing the stiffness of the floor panel-to-panel connections and the number of storeys, and by decreasing the stiffness of the floor-to-wall connections, the ratio between the distance between two consecutive shear-walls and the floor span, and the stiffness of the shear-walls. Specific threshold values ensuring a rigid diaphragm behaviour are determined for the properties of the system, delivering the geometrical and mechanical conditions for rigid CLT floor diaphragms.
This paper presents a comprehensive numerical study aimed at defining the conditions for which Cross-Laminated Timber (CLT) floor diaphragms of platform-type CLT buildings can be assumed rigid in linear seismic analyses. Numerical analyses are conducted on a regular CLT archetype within a framework of parametric analyses, in which different geometrical and mechanical parameters including the stiffness of the floor panel-to-panel connections, the stiffness of the floor-to-wall connections, the floor span, the distance between two consecutive shear-walls, the lateral stiffness of the shear-walls, and the number of storeys are varied. The conditions to ensure a rigid diaphragm behaviour are derived by calculating the discrepancies in terms of floor displacements, distribution of lateral forces in the shear-walls, and fundamental vibration period of the structure, between numerical models where the floor is modelled with its actual deformability and as rigid. The discrepancies are compared with threshold values given in Eurocode 8 and used to derive the conditions for which CLT floor diaphragms can be assumed rigid. The study reveals that the behaviour of the floor tends toward the rigid diaphragm condition by increasing the stiffness of the floor panel-to-panel connections and the number of storeys, and by decreasing the stiffness of the floor-to-wall connections, the ratio between the distance between two consecutive shear-walls and the floor span, and the stiffness of the shear-walls. Specific threshold values ensuring a rigid diaphragm behaviour are determined for the properties of the system, delivering the geometrical and mechanical conditions for rigid CLT floor diaphragms.
Nowadays, wooden constructions should occupy an important place in the construction industry, mainly because they eliminate negative effects on the environment. Eco-friendly and sustainable buildings include, for example, buildings made of timber column structures and buildings made of cross-laminated timber (CLT) panels. Eco-friendly buildings based on wood are in the minority in Slovakia. The research question is what advantages and disadvantages can the construction of an administrative building from CLT panels include, not only for the construction investor, compared to a construction from a timber column structure? The main research method is the analysis of time and cost parameters of the construction of wooden buildings, with the aim of drawing attention to the characteristics of construction in the segment of administrative buildings in Slovakia. The synthesis of the resulting knowledge has proven the advantage of construction from CLT panels compared to timber column structures. The task of designers is to offer knowledge about the advantages and disadvantages of different types of constructions, to which the results of our study contribute. This study is based on a thorough time–cost analysis of the parameters of the CLT construction system and timber column structures, and it definitely fills the publishing gap in the given topic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.