In this paper, we discuss iterative and noniterative splitting methods, in theory and application, to solve stochastic Burgers’ equations in an inviscid form. We present the noniterative splitting methods, which are given as Lie–Trotter and Strang-splitting methods, and we then extend them to deterministic–stochastic splitting approaches. We also discuss the iterative splitting methods, which are based on Picard’s iterative schemes in deterministic–stochastic versions. The numerical approaches are discussed with respect to decomping deterministic and stochastic behaviours, and we describe the underlying numerical analysis. We present numerical experiments based on the nonlinearity of Burgers’ equation, and we show the benefits of the iterative splitting approaches as efficient and accurate solver methods.