Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The rational structural design of polycrystalline diamond compact (PDC) cutters effectively enhances the performance of drill bits in rock fragmentation and extends their service life. Inspired by bionics, a bionic PDC cutter was designed, taking the mole claw toe, shark tooth, and microscopic biomaterial structures as the bionic prototypes. To verify its rock-breaking effectiveness, the finite element method was employed to compare the rock-breaking processes of the bionic cutter, triangular prism cutter, and axe cutter. The study also investigated the influence of different back rake angles, cutting depths, arc radii, and hydrostatic pressures on rock breaking using the bionic cutter. Prior to this, the accuracy of the finite element model was validated through laboratory tests. Subsequently, a drill bit incorporating all three types of cutters was constructed, and simulations of rock breaking were conducted on a full-sized drill bit. The results demonstrate that the bionic cutter exhibits superior load concentration on the rock compared to the triangular prism cutter and the axe cutter. Additionally, its arc structure facilitates the “shoveling” of the rock, making it more susceptible to breakage under tensile stress. As a result, the efficiency of the bionic cutter surpasses that of the triangular prism and axe cutters. Similarly, it exhibits minimal fluctuations and values in cutting force. As the back rake angle and cutting depth increase, the MSE and cutting force of all three cutters also increase. However, the bionic cutter consistently maintains the lowest MSE and cutting force, confirming the superiority of its bionic structural design. The MSE and cutting force of the bionic cutter fluctuate with the increase of the arc radius, and the optimal arc radius falls within the simulation range, between 21 mm and 23 mm. Compared to the other two types of cutters, bionic cutters possess a unique structure that allows for better release of internal stress within the rock, thereby ensuring higher efficiency in rock-breaking, particularly in deep geological formations. The rock breaking simulation results of full-sized drill bits show that the use of a bionic cutter can improve the drill bit’s ability to penetrate the formation, reduce the possibility of drill bit bounce during the rock breaking process, prevent the occurrence of stick-slip, improve the drilling stability, effectively improve the efficiency and service life of the drill bit during the rock breaking process, and reduce the drilling cost. It is concluded that the research results of bionic PDC cutters are helpful to the development of high-performance drill bits and the reduction of drilling costs.
The rational structural design of polycrystalline diamond compact (PDC) cutters effectively enhances the performance of drill bits in rock fragmentation and extends their service life. Inspired by bionics, a bionic PDC cutter was designed, taking the mole claw toe, shark tooth, and microscopic biomaterial structures as the bionic prototypes. To verify its rock-breaking effectiveness, the finite element method was employed to compare the rock-breaking processes of the bionic cutter, triangular prism cutter, and axe cutter. The study also investigated the influence of different back rake angles, cutting depths, arc radii, and hydrostatic pressures on rock breaking using the bionic cutter. Prior to this, the accuracy of the finite element model was validated through laboratory tests. Subsequently, a drill bit incorporating all three types of cutters was constructed, and simulations of rock breaking were conducted on a full-sized drill bit. The results demonstrate that the bionic cutter exhibits superior load concentration on the rock compared to the triangular prism cutter and the axe cutter. Additionally, its arc structure facilitates the “shoveling” of the rock, making it more susceptible to breakage under tensile stress. As a result, the efficiency of the bionic cutter surpasses that of the triangular prism and axe cutters. Similarly, it exhibits minimal fluctuations and values in cutting force. As the back rake angle and cutting depth increase, the MSE and cutting force of all three cutters also increase. However, the bionic cutter consistently maintains the lowest MSE and cutting force, confirming the superiority of its bionic structural design. The MSE and cutting force of the bionic cutter fluctuate with the increase of the arc radius, and the optimal arc radius falls within the simulation range, between 21 mm and 23 mm. Compared to the other two types of cutters, bionic cutters possess a unique structure that allows for better release of internal stress within the rock, thereby ensuring higher efficiency in rock-breaking, particularly in deep geological formations. The rock breaking simulation results of full-sized drill bits show that the use of a bionic cutter can improve the drill bit’s ability to penetrate the formation, reduce the possibility of drill bit bounce during the rock breaking process, prevent the occurrence of stick-slip, improve the drilling stability, effectively improve the efficiency and service life of the drill bit during the rock breaking process, and reduce the drilling cost. It is concluded that the research results of bionic PDC cutters are helpful to the development of high-performance drill bits and the reduction of drilling costs.
Geothermal energy, recognized as a clean energy source, has attracted widespread attention for its extraction. However, it is located in deep and complex geological formations, presenting a significant challenge to the drilling operations of existing Polycrystalline Diamond Compact (PDC) drill bits. To further understand the rock-breaking mechanism of PDC cutters in deep geological formations and improve rock-breaking efficiency, a finite element model employing the cohesive zone method was developed for a saddle-shaped PDC cutter (SC). This model was validated against experimental simulations, proving its capability to capture real rock crack initiation during the simulation process accurately. By analyzing the formation of cracks under cutting forces, the SC’s rock-breaking mechanism was explored and compared with conventional cutters (CCs), clarifying its advantages. Additionally, the model analyzed the effects of different confined pressures, back rake angles, and structural parameters on crack formation in SC rock-breaking, highlighting directions for structural optimization. Full-scale drill bit rock-breaking simulations were conducted to verify the effectiveness and optimization of single cutter usage. The results indicated that the total number of cracks and the generation of tensile cracks determine the rock-breaking efficiency of the cutter. A lower total number of cracks and a higher proportion of tensile cracks lead to better rock-breaking performances. Due to its unique ridged and curved structure, the SC can generate concentrated and tensile stresses on the rock more effectively, resulting in fewer total cracks and a higher proportion of tensile cracks. The increase in confined pressure suppresses the generation of tensile cracks during rock-breaking, dispersing the rock-breaking energy, increasing the total number of cracks, and reducing rock-breaking efficiency. However, under the same conditions, using SC can effectively address these issues and enhance efficiency. For deep formation drilling, a back rake angle range of 15° to 20° is recommended for SC. The arc radius significantly impacts the SC’s tensile cracks and total number of cracks, with a recommended arc radius range of 50 mm to 60 mm, and the SC structure could be modified from an arc to a straight line and back to an arc. The results contribute to enhancing the efficiency of deep drilling and theoretical research on drill bits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.