“…Their desirable properties, which include low density, high mechanical strength, heat resistance, low-temperature fracture toughness, low thermal expansion, resistance to in-service corrosion processes, and biocompatibility, allow for wide applications in biomedical, automotive, aviation, and military engineering. An example is the modern method of joining parts using the electromagnetic riveting process (EMR), a high-speed impact connection technology with the advantages of fast loading speed, large impact force, and stable rivet deformation [ 1 ]. However, a high friction coefficient, poor resistance to abrasive wear, and a low hardness limit the possible areas of application of titanium alloys.…”