This paper presents experimental and numerical investigation of stability and rooster tail of a mono-hull high-speed planing craft with a constant deadrise angle. Initially, a one-fifth scale model was tested in a towing tank, which showed porpoising phenomenon at 8 m/s (equal to the speed of sailing). Subsequently, two wedges of 5 and 10 mm heights, based on the boundary layer calculations, were mounted on the aft section of the planing hull. These wedges were shown to increase the lift at the aft section. These experiments were carried out at different speeds up to 10 m/s in calm water. The experimental results indicated that the installed wedges reduced the trim, drag, and the elapsed time for reaching the hump peak, and also eliminated the porpoising condition. All these test cases were also numerically simulated using Star CCM+ software. The free surface was modeled using the volume of fluid scheme in three-dimensional space. The examined planing craft had two degrees of freedom, and overset mesh technique was used for space discretization. The obtained numerical results were compared with experimental data and good agreement was displayed in the presented comparisons. Ultimately, the effect of the wedge on the rooster tail behind the planing craft was studied. The results of this investigation showed that by decreasing the trim at a constant speed, the height of the generated wake profile (rooster tail) behind the craft decreases, albeit its length increases.