Silicon epitaxial layers deposited on substrates doped with boron and containing certain amount of misfit dislocations were studied by means of back-reflection synchrotron section topography. Samples with different curvature determined by substrate thickness and status of their back sides were examined. When the curvature of the sample was negligible the section pattern consisted of two stripes corresponding, respectively, to the layer and to the substrate. Misfit dislocations were revealed in the direct contrast located mostly in the vicinity of the substrate stripe. In the samples with radius of curvature smaller than 100 m additional interference fringes were observed in a wide area behind the main two stripes. The sequence of these interference fringes was dependent on the curvature of the sample and differed from that of bent substrate wafers of the similar curvature. Asa consequence the images of misfit dislocations became much more extended and contained many characteristic details. The character of experimental misfit dislocation images both in the case of flat and bent crystals was reproduced using numerical integration of the Takagi-Taupin equations. PACS 61.10 -X-ray diffraction and scattering. PACS 61.72 -Defects and impurities in crystals; microstructure. PACS 01.30. -Conference proceedings.