The paper presents a comparative study of a number of theoretical/experimental/numerical results concerning the dynamics of natural (gravitational), Marangoni and related mixed convection in various geometrical models of widely-used technologies for the production of single-crystalline materials (Horizontal and vertical Bridgman growth, Czochralski method, Floating Zone Technique). Emphasis is given to fundamental knowledge provided over the years by landmark analyses as well as to very recent contributions. Such a knowledge is of paramount importance since it is validating new, more complex models, accelerating the current trend towards predictable and reproducible phenomena and finally providing an adequate scientific foundation to industrial processes which are still conducted on a largely empirical basis. A deductive approach is followed with fluid-dynamic systems of growing complexity being treated as the discussion progresses.