Wet fluidized bed granulation and coating processes have been widely used in the pharmaceutical and food industries. The complex gas–solid flow coupled with heat and mass transfer in such processes made it hard to form complete control over the apparatuses. To serve better design, scaling-up, and optimization of granulators and coaters, the underlying micro-scale mechanisms must be clarified. Computational fluid dynamics coupled with the discrete element method (CFD-DEM) provides a useful tool to study in-depth the gas-solid hydrodynamics of the granulation and coating processes. This review firstly introduced the fundamental theory of CFD-DEM from governing equations, force calculation, and coupling schemes. Then the application of CFD-DEM in simulating wet fluidized bed granulation and coating was presented. Specifically, the research focus and the role of CFD-DEM in resolving issues were discussed. Finally, the outlook on the development of CFD-DEM in the context of granulation and coating was given.