Tuning the wavelength of emitted radiation is a tremendous feature of quantum cascade lasers which enables their use in various applications. Usually, this tuning is executed by the change of the bias current or the temperature. In this paper, it is demonstrated, both experimentally and theoretically, that yet another possibility of tuning laser wavelength offers the change of doping density. For the experimental demonstration, a set of GaAs/AlGaAs devices emitting in the range 9.3-9.7 µ m was MBE grown and processed. For the theoretical analysis, the simulations that employ nonequilibrium Green's function formalism, applied to the single-band effective mass Hamiltonian, are used. The analysis shows that the physical mechanism responsible for wavelength-doping correlation is a linear Stark effect. The range of tuning is limited on both low and high doping side. Both these limits are established and discussed.