In order to design a hypersonic vehicle for a wide-ranged Mach number, a novel parallel vehicle for a wide-speed range has been proposed. In this paper, we employ a numerical method to investigate a parallel vehicle's aerodynamic performance and flow field characteristics. The obtained results show that the aerodynamic performance of the novel parallel vehicle is better than that of the waverider designed with a single Mach number for the wide-speed range. With the increase in Mach number, the lift-to-drag ratio of the novel parallel vehicle first increases and then decreases. When the Mach number is 7 and the angle of attack is 3 • , the lift-to-drag ratio is the largest, and its value is 3.968. When the angle of attack is 3 • , the lift-to-drag ratio is not lower than 3.786 in the range considered in the current study, and the novel parallel vehicle's aerodynamic performance is good. The wing changes the drag performance of the parallel vehicle remarkably, and results in the decrease of the lift-to-drag ratio. Meanwhile, the wing can enhance the pitching moment performance.