Purpose
This study aims to explore the combined impacts of velocity and thermal slips on hybrid nanomaterial (GO+Ag+kerosene oil) bounded between two parallel infinite walls (plates). Both the walls are separated by a distance. The upper wall is subjected to squeezing with velocity, while the lower wall stretches with velocity. A uniform magnetic field acts normally to the flow. Moreover, heat transmission is analyzed in the presence of Joule heating. Heat transport characteristics are investigated by imposing the Cattaneo–Christov (C–C) heat flux model. The behavior of velocities, skin friction and temperature under sundry variables are examined graphically.
Design/methodology/approach
The obtained partial differential equations (PDEs) related to the considered problem are nondimensionalized by choosing appropriated variables. These nondimensional PDEs are then solved by the numerical technique, finite difference method (FDM). For implementation of this method, the obtained nondimensional PDEs are converted into finite difference equations (FDEs) using forward difference (FD) toolkits.
Findings
Velocity of the hybrid nanomaterial decreases with higher Hartman number and velocity slip parameter, while it increases with increase in Reynolds and squeezing numbers. Temperature of the hybrid nanomaterial increases for large Hartman number, Eckert number and squeezing parameter, while it is reduced by higher thermal slip parameter, thermal relaxation time parameter and nanoparticle volume fractions for graphene oxide (GO) and silver (Ag). Skin friction is controlled through higher Reynolds number, while it intensifies with nanoparticle volume fractions for GO and Ag.
Originality/value
Here, the authors have investigated 2D flow of hybrid nanomaterial bounded between two parallel walls. The lower and upper walls are subjected to stretching and squeezing, respectively. The authors guarantee that all outcomes and numerical technique (FDM) results are original, neither submitted nor published in any journal before.