Atmospheric cold fronts provide recurring forcing for circulations and long-term transport in estuaries with microtides. Multiple horizontal ADCPs were used to obtain time series data from three inlets in Barataria Bay. The data cover a period of 51 atmospheric cold fronts between 2013 and 2015. The weather and subtidal ocean response are highly correlated in the “weather band” (3–7 days). The cold front–associated winds produce alternating flows into, out of, and then back into the bay, forming an asymmetric “M” for low-pass filtered flows. Results show that cold front–induced flows are the most important component in this region, and the flows can be predicted based on wind vector time series. Numerical simulations using a validated Finite-Volume Coastal Ocean Model (FVCOM) demonstrate that the wind-driven oscillations within the bay are consistent with the quasi-steady state with little influence of the Coriolis effect for cold front–related wind-driven flows. The four major inlets (from the southwest to the northeast) consistently carry 10%, 57%, 21%, and 12% of the tidal exchange of the bay, respectively. The subtidal exchange rates through them however fluctuate greatly with averages of 18% ± 13%, 35% ± 18%, 31% ± 16%, and 16% ± 9%, respectively. Several modes of exchange flows through the multiple inlets are found, consisting of the all-in and all-out mode (45% occurrence) under strong winds perpendicular to the coastline; the shallow-downwind, deep-upwind mode (41%), particularly during wind-relaxation periods; and the upwind-in and downwind-out mode (13%) under northerly or southerly winds. These modes are discussed with the low-pass filtered model results and verified by a forcing–response joint EOF analysis.