Present study involves experimental and numerical work to investigate the effect of integral wake splitter towards the overall performance of cross-flow, circular tube, heat exchanger system. The experimental work was conducted to obtain local distribution of pressure coefficient around plain tube bank of staggered arrangement which was subjected to a cross-flow of air with Reynolds number of 15950. The numerical work consisted of 2-dimensional unsteady numerical simulation which was validated against the experimental data. The validated numerical approach was utilized to simulate cross-flow around similar tube bank but with integral wake splitter of length-to-diameter ratio of 0.5, 1, 1.5 and 2, at Reynolds number between 5000 to 50000. It is concluded that integral wake splitter is able to reduce pressure loss, which in turn reduces power requirement of a blower, which is intended in effort to increase the system efficiency. Splitter which acts as fin may improve the overall performance of the system by enhancing total heat removal via extended surface provided that certain value of fin efficiency is achieved.