This work reports a numerical study on the effect of three nondimensionalization approaches that are commonly used to solve the classic problem of the 2‐D differentially heated cavity. The governing equations were discretized using orthogonal collocation with Legendre polynomials, and the resulting algebraic system was solved via Newton–Raphson method with LU factorization. The simulations were performed for Rayleigh numbers between 103 and 108, considering the Prandtl number equal to 0.71 and a geometric aspect ratio equal to 1, analyzing the convergence and the computation time on the flow lines, isotherms and the Nusselt number. The mesh size that provides independent results was 51 × 51. Approach II was the most suitable for the nondimensionalization of the differentially heated cavity problem.