Free convection flow and heat transfer in a rectangular cavity with heated triangle and internal heat generation is investigated numerically. A finite element analysis is performed to investigate the effects of uniform heating and is also used for solving the Navier-Stokes and Energy balance equations. The horizontal bottom wall is divided into three equal sections. The middle section of the horizontal bottom wall, bottom side of the triangle and left vertical left wall in the enclosure were kept temperature at T h . The other two parts of the horizontal bottom wall and the other two sides of the triangle were kept thermal insulation while the right vertical walls and the top wall of the cavity were maintained constant temperature T c with T h >T c . The physical problems are represented mathematically by different sets of governing equations along with corresponding boundary conditions. The dimensionless Parameters in the equations are performed for Heat generation (λ), Rayleigh number (Ra) and Prandtl number (Pr). The streamlines, isotherms, average Nusselt number, velocity profiles and temperature distribution of the fluid in the enclosure are presented graphically. The numerical results indicate that the Heat Generation and Rayleigh number have strong influence on the streamlines and isotherms. Also the mentioned parameters have significant effect on average Nusselt number at the hot wall and average temperature of the fluid in the enclosure.