2016
DOI: 10.1016/j.ast.2016.04.004
|View full text |Cite
|
Sign up to set email alerts
|

Numerical simulation of pararotor dynamics: Effect of mass displacement from blade plane

Abstract: The pararotor is a biology-inspired decelerator device based on the autorotation of a rotary wing, whose main purpose is to guide a load descent into a certain planetary atmosphere. This paper focuses on a practical approach to the general dynamic stability of a pararotor whose center of mass is displaced from the blade plane. The numerical simulation tool developed is based upon the motion equations of pararotor flight, utilizing a number of simplifying hypotheses that allow the most influencing factors on fl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
1
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 19 publications
0
1
0
2
Order By: Relevance
“…In the present study, the flight and rotation speed of SIV are chosen to be approximately 20-80 m s −1 , 20-40 r/s, respectively, which are higher than those for decelerators with parachutes (≈10 m s −1 , 4 r/s [1,38]) or wings (≈20 m s −1 and 12 r/s [2,13,14,[39][40][41][42][43]). However, compared with aviation vehicles, (e.g., rockets, missiles, airplanes, etc) that rely on rotation and fins to achieve a stable flight [44], the flight speed and rotation speed of SIV are much lower.…”
Section: The Force Acting On Sivmentioning
confidence: 99%
“…In the present study, the flight and rotation speed of SIV are chosen to be approximately 20-80 m s −1 , 20-40 r/s, respectively, which are higher than those for decelerators with parachutes (≈10 m s −1 , 4 r/s [1,38]) or wings (≈20 m s −1 and 12 r/s [2,13,14,[39][40][41][42][43]). However, compared with aviation vehicles, (e.g., rockets, missiles, airplanes, etc) that rely on rotation and fins to achieve a stable flight [44], the flight speed and rotation speed of SIV are much lower.…”
Section: The Force Acting On Sivmentioning
confidence: 99%
“…Nadal-Mora and Sanz-Andr es (2006) obtained the stability range of pararotors via equations of motion, and Piechocki et al (2008) developed an analytical model and analyzed the stability of a type of pararotor whose blade is aligned with the mass center of the whole system. Additionally, in Piechocki et al (2014Piechocki et al ( , 2016, parameters such as displacement of mass center affecting their dynamic behavior were examined, and in Francisco-Martiarena et al (2015), the influence of aspect ratio on their performance was shown experimentally. Kellas (2007) designed, constructed and controlled a singlebladed vehicle deploying no motors in the auto-rotating phase.…”
Section: Introductionmentioning
confidence: 99%
“…La componente en la dirección j W b se considera nula, asumiendo la hipótesis de que el flujo a través de la pala es bidimensional. Esto se debe a que, a lo largo del eje j W b , la componente aerodinámica es de menor orden que en las otras direcciones, y tiene un comportamiento cíclico alrededor de un valor promedio nulo [29].…”
Section: Matriz De Transformación Del Sistema Wb Al W1bunclassified
“…Existen distintos estados aerodinámicos en los que puede hallarse sumergido un rotor, que se encuentran desarrollados en la bibliografía de referencia [27], [30], [29]. Para el caso en estudio, puede suponerse que la relación entre la velocidad de descenso, U W , y la velocidad inducida, v i , es mayor, en valor absoluto, a 2.…”
Section: Velocidad Inducidaunclassified