2015
DOI: 10.1016/j.ces.2014.11.053
|View full text |Cite
|
Sign up to set email alerts
|

Numerical simulation of phase transition problems with explicit interface tracking

Abstract: Phase change is ubiquitous in nature and industrial processes. Started from the Stefan problem, it is a topic with a long history in applied mathematics and sciences and continues to generate outstanding mathematical problems. For instance, the explicit tracking of the Gibbs dividing surface between phases is still a grand challenge. Our work has been motivated by such challenge and here we report on progress made in solving the governing equations of continuum transport in the presence of a moving interface b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2016
2016
2023
2023

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 55 publications
0
2
0
Order By: Relevance
“…We list below only a few examples over the past year (since 2015). Recent applications of WENO schemes can be found in the simulations of astrophysics and geophysics [55,83,137,140,162,172,215,223], atmospheric and climate science [70,181,225], batch chromatographic separation [101], biomolecular solvation [286], bubble clusters in fluids [222], combustion [11,15,24,164,214,268], detonation waves [92,114,145,233], elastic-plastic solids [173], flame structure [261], granular gas [3], hypersonic flows [109], infectious disease models [209], laser welding [174], magnetohydrodynamics [20,166], mathematical finance for solving the Black-Scholes equation [90], multiphase and multispecies flows [13,91,108,110,159,160,239], networks and blood flows [168], ocean waves [28,125], oil storage process [196], rarefi...…”
Section: Finite Difference and Finite Volume Weno Schemesmentioning
confidence: 99%
“…We list below only a few examples over the past year (since 2015). Recent applications of WENO schemes can be found in the simulations of astrophysics and geophysics [55,83,137,140,162,172,215,223], atmospheric and climate science [70,181,225], batch chromatographic separation [101], biomolecular solvation [286], bubble clusters in fluids [222], combustion [11,15,24,164,214,268], detonation waves [92,114,145,233], elastic-plastic solids [173], flame structure [261], granular gas [3], hypersonic flows [109], infectious disease models [209], laser welding [174], magnetohydrodynamics [20,166], mathematical finance for solving the Black-Scholes equation [90], multiphase and multispecies flows [13,91,108,110,159,160,239], networks and blood flows [168], ocean waves [28,125], oil storage process [196], rarefi...…”
Section: Finite Difference and Finite Volume Weno Schemesmentioning
confidence: 99%
“…Front-tracking method has been used to simulate two and three-dimensional phase transition phenomena, such as precipitation, dissolution, freezing, and melting problems, with complex and changing interface geometry and topology. In such applications, the interface was propagated by the Lagrangian fronttracking method under the conservation laws of mass or energy coupled with an incompressible Navier-Stokes (Hu et al, 2015). Siguenza et al (2015) investigated a front-tracking immersed boundary method to solve the fluid-structure interactions between a capsule membrane and inner and outer fluids.…”
Section: Introductionmentioning
confidence: 99%