The incident shock attenuation phenomenon in shock tube has received widespread interest because of its inevitable influence on experimental gas properties. However, few studies have investigated the cascading effects of the resulting nonuniformity on shock reflection in shock tunnels before the nozzle. This paper describes a numerical study on the unsteady reflection of a decelerating incident shock driven by a decelerating piston, as a simplification of the complex nonideal factors. The initial decay and uniform parameter distributions are generated based on the non-inertial frame. The results indicate that the existence of the nonuniform area forces the reflected shock wave region to undergo a transition process of attenuation and then stability. The final values of the gas parameters in zone 5 will, therefore, deviate from those given by the traditional relation for an ideal shock tube, which are only dependent on the terminal shock Mach number. This affects the determination of the total temperature T5, which is difficult to measure directly. We discuss the reconstruction of the nonuniform region with the attenuation trajectory of the incident shock wave and find that there is no one-to-one correspondence between this trajectory and the resulting nonuniformity, which introduces additional uncertainties to the predictions. Thus, an analogy method is developed through the multilevel block building algorithm, allowing the total temperature T5 to be determined using the total pressure p5 considering the effect of nonuniformity. Further assessments verify the applicability of this method in cases with multidimensional and viscous interactions.