High-alkali Zhundong coal presents significant challenges for power generation, due to its propensity for fouling and slagging. This study investigates a retrofit of a 300 MW tangentially fired boiler with the integration of a slag-tap chamber to improve combustion performance. Computational fluid dynamics (CFD) simulations are employed to examine the influence of this modification on combustion dynamics and the effects of Zhundong coal blending ratios on heat and mass transfer. The results demonstrate that the retrofit facilitates stable airflow recirculation, optimizing combustion efficiency with a peak temperature of 2080 K in the combustion chamber. The flue gas temperature decreases to approximately 1650 K upon exit, which can be attributed to the slag catcher cooling. The integration of the liquid slagging chamber significantly mitigates slag formation, while enhancing oxygen and CO2 distribution throughout the furnace. As the blending ratio of Zhundong coal increases, oxygen concentrations rise in the bottom burner region, indicating improved air–fuel mixing. With a 30% Zhundong coal ratio, the combustion chamber temperature increases by 3%, and flow velocity in the upper and middle furnace sections decreases by 15%, leading to enhanced combustion intensity. This retrofit demonstrates substantial improvements in combustion stability, slagging control, and the efficient utilization of high-alkali coal.