Проводится моделирование течений газа в технических устройствах, в которых протекают процессы, связанные с нестационарным локализованным подводом энергии. Для численного моделирования нестационарных сопловых течений с интенсивным энергоподводом используется метод конечных объемов и векторизованный подход к
расчету потоков. Для моделирования термодинамических процессов в высокотемпературных потоках воздуха применяется приближенная модель равновесной термодинамики воздуха. Приводятся результаты численного моделирования одномерных и двумерных сопловых течений с подвижной зоной энерогоподвода. На основе данных численного моделирования обсуждается качественная картина газодинамических и тепловых процессов в сопле при нестационарном подводе энергии. Устанавливается зависимость расходных характеристик сопла, а также смещение соплового скачка уплотнения при перерасширенном истечении газа из сопла от интенсивности и
цикличности энергоподвода в дозвуковой части сопла.
Gas flows are simulated in technical devices where processes associated with unsteady localized energy supply are proceeded. The finite volume method and the vectorized approach to the calculation of numerical fluxes are applied to the simulation of unsteady nozzle flows with intense energy supply. An approximate model of equilibrium thermodynamics of air is used to simulate thermodynamic processes in high-temperature air flows. The numerical results obtained for
one-dimensional and two-dimensional nozzle flows with moving zones of energy supply are analyzed. A qualitative picture of gasdynamic and thermal processes in a nozzle with unsteady energy supply is discussed on the basis of the results
of numerical simulation. A dependence of the nozzle flow rate and the displacement of nozzle shock wave on the intensity and cyclicity of energy supply is considered for overexpanded nozzle flow.