Metastatic tumor blood perfusion and interstitial fluid transport based on 3D microvasculature response to inhibitory effect of angiostatin are investigated. 3D blood flow, interstitial fluid transport, and transvascular flow are described by the extended Poiseuille's, Darcy's, and Starling's law, respectively. The simulation results demonstrate that angiostatin has the capacity to regulate and inhibit the formation of new blood vessels and has an obvious impact on the morphology, growth rate, and the branches of microvascular network inside and outside the metastatic tumor. Heterogeneous blood perfusion, widespread interstitial hypertension, and low convection within the metastatic tumor have obviously improved under the inhibitory effect of angiostatin, which suits well with the experimental observations. They can also result in more efficient drug delivery and penetration into the metastatic tumor. The simulation results may provide beneficial information and theoretical models for clinical research of antiangiogenic therapy strategies.