Summary
For the air feed in proton exchange membrane fuel cells (PEMFCs), the wave‐like gas channel (GC) shows obvious advantages over the straight GC because the former enhances collision of secondary flow and diffusion in the gas diffusion layer (GDL). However, it is prone to water flooding, which brings greater pressure drop, larger pressure oscillation, and blocking of reaction area. In the present study, numerical models of the water dynamic processes, including water droplets emerging from micropores on the GDL surface and removing through the GC, are established based on the volume of fluid (VOF) method. Water coverage ratio and pressure drop are calculated to evaluate the water flooding. The effects of the dimensional parameters of wave‐like GC and contact angle of channel walls on the water accumulation are studied. The emergence and removal of liquid water is a quasiperiodic and oscillating process. Multicycle simulations show that channel pressure drop increases linearly with greater growth rate than channel length. The equilibrium position of water droplet is strongly dependent on the relative wettability of the GDL and bipolar plate (BPP) surfaces. And the geometric parameters of GC have a significant impact on the pressure, water removal behavior and detachment time. Smaller bent angle brings bigger pressure drop, and larger cycle length is helpful for relieving the oscillation of pressure.