In this work, a new use of mixed Ti-6Al-4V powder, consisting of the retained powder after screening for additive manufacturing and the recycled powder after multiple printing, has been exploited. The powder mixture has been hot-isostatically-pressed (HIPed) at 930 °C/120 MPa for 3 h to reach full density. The hot deformation behavior of the as-HIPed powder compacts were investigated through isothermal compression tests, kinetic analyses, and hot processing maps. Finally, the optimized hot working parameters were validated using upsetting tests. The results show that the as-HIPed Ti-6Al-4V alloy has a fine and homogeneous microstructure. The activation energies were calculated to be 359 kJ/mol in the α + β phase regime and 463 kJ/mol in the β phase regime, respectively. The optimal hot working parameters are a deformation temperature above 950 °C and strain rate higher than 0.1 s−1. The hot workability of as-HIPed powder compacts is better than the as-cast billets. The deformed microstructure can be finer than that of as-HIPed state, and the mechanical performance can be further improved by the optimal thermo-mechanical processing treatment.