Another approach to distinguish vulnerable from stable plaques is based on a biomechanical stress analysis. 8,9 Plaque rupture is, in essence, the mechanical failure of the fibrous cap. A biomechanical analysis incorporates the morphology, tissue properties, and hemodynamics to model the mechanical Background and Purpose-Two approaches to target plaque vulnerability-a histopathologic classification scheme and a biomechanical analysis-were compared and the implications for noninvasive risk stratification of carotid plaques using magnetic resonance imaging were assessed. Methods-Seventy-five histological plaque cross sections were obtained from carotid endarterectomy specimens from 34 patients (>70% stenosis) and subjected to both a Virmani histopathologic classification (thin fibrous cap atheroma with <0.2-mm cap thickness, presumed vulnerable) and a peak cap stress computation (<140 kPa: presumed stable; >300 kPa: presumed vulnerable). To demonstrate the implications for noninvasive plaque assessment, numeric simulations of a typical carotid magnetic resonance imaging protocol were performed (0.62×0.62 mm 2 in-plane acquired voxel size) and used to obtain the magnetic resonance imaging-based peak cap stress. Results-Peak cap stress was generally associated with histological classification. However, only 16 of 25 plaque cross sections could be labeled as high-risk (peak cap stress>300 kPa and classified as a thin fibrous cap atheroma). Twentyeight of 50 plaque cross sections could be labeled as low-risk (a peak cap stress<140 kPa and not a thin fibrous cap atheroma), leading to a κ=0.39. 31 plaques (41%) had a disagreement between both classifications. Because of the limited magnetic resonance imaging voxel size with regard to cap thickness, a noninvasive identification of only a group of lowrisk, thick-cap plaques was reliable. Conclusions-Instead of trying to target only vulnerable plaques, a more reliable noninvasive identification of a select group of stable plaques with a thick cap and low stress might be a more fruitful approach to start reducing surgical interventions on carotid plaques.