Three-dimensional CFD-DEM-IBM simulations of sand production in a sandstone formation, using periodic boundaries, were performed using 10000 frictional elastic spheres bonded together and compressed at 1 MPa of overburden pressure. Sand production simulation geometry and procedure are proposed, in which the cone penetration test (CPT) has been used to investigate a physical perforation penetration of the cemented sandstone material with the real-world grain size distribution from the Ustyurt-Buzachi Sedimentary Basin. The Immersed Boundary Method (IBM) was adapted for the sand production simulation geometry to simulate the fluid flow near the well casing. Oil with low viscosity and density was used as an injection fluid (reservoir fluid). Erosion near the perforation tunnel due to the pressure drawdown was examined, where the production of sand particles was initiated during the first flow due to the drag force that lifted the sand particles from the perforation damage zone. At the beginning of the simulation a sand arch was captured around the perforation tunnel and due to the fluid flow it collapsed and perforation cavity became larger. The amount and mass of produced sand particles were calculated.