The finding of the solution of the wave equation, formulated as the Cauchy problem, does not exhaust all possibilities of the theory. The attempt to examine that one by admitting that the time is an imaginary value is made. So the new curvilinear coordinates, named hyperbolic, are introduced in consideration. They allow for hyperbolic equations to extend a field of searching of solutions to the complex plan and give the possibility to apply powerful Fourier's method. Due to that, the wave equation takes a form of Laplace's one in polar coordinates. However, the boundary condition differs from well known Dirichlet problem that in this case looses the sence. The new condition is admitted and it is physically formulated as the description of wave from various inertial systems of coordinates. So the result is obtaining proceeding either of the momentum picture of a wave, made from the moving system of coordinates, or on the oscillogram, developed in time The analytic solution that differs from Poisson integral is deduced and gives the formulas of relativistic addition of velocities for points of wave, observing from different inertial systems. That integral was also formally yielded by using the conform translation. Additionally, in the frequencies field those formulas describe the relativistic Doppler's effect and the red shift in the wave spectrum. For oscillatory boundary condition the solution of the obtained integral gives a description of the shock waves. The fact, that some formulas of Relativity may be deduced by new way, gives the possibility to explain the relativistic theory proceeding from supposition of waving nature of quantum objects.