2019
DOI: 10.12962/j24775401.v5i1.3806
|View full text |Cite
|
Sign up to set email alerts
|

Numerical Solution of Second Order Initial Value Problems of Bratu-type Equations using Sixth Order Runge-Kutta Seven Stages Method

Abstract: In this paper, second order initial value problem of Bratu-type ordinary differential equations is solved numerically using sixth order Runge-Kutta seven stages method. The stability of the method is checked and verified. In order to justify the validity and effectiveness of the method, two model examples are solved and the numerical solutions are compared to the corresponding exact solutions. Furthermore, the results obtained using the current method are compared with the numerical results obtained by other r… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
11
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(11 citation statements)
references
References 1 publication
0
11
0
Order By: Relevance
“…To obtain the values of 𝑎 𝑗 , (𝑗 = 0,1, … ,8), Equation ( 4) is solved using Gaussian elimination and then substituted back into Equation (2) to get the approximate solution. The derivation of the new method can be described by the following procedures.…”
Section: Development Of the Methodsmentioning
confidence: 99%
See 3 more Smart Citations
“…To obtain the values of 𝑎 𝑗 , (𝑗 = 0,1, … ,8), Equation ( 4) is solved using Gaussian elimination and then substituted back into Equation (2) to get the approximate solution. The derivation of the new method can be described by the following procedures.…”
Section: Development Of the Methodsmentioning
confidence: 99%
“…The new three-step hybrid block method ( 6) is said to be consistent if its order is greater than or equal to one (1). Therefore, this new method is consistent since its order is greater than 1.…”
Section: Order Of the Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…As the Runge-Kutta theory is well developed, a large family of algorithms, such as that of (16), exist [54]. Fenta and Derese [55] presented, for example, an algorithm of 6 th order, which is utilized together with ( 16) and ( 14) in Section IV. Owing to its size, it is not reproduced here, and it roughly duplicates the computing effort compared with (16).…”
Section: Runge-kutta Numerical Integrationmentioning
confidence: 99%