The bivariate spectral quasilinearization method (BSQLM) on overlapping grids is presented and applied in the analysis of unsteady magnetohydrodynamic mixed convection flow of Eyring-Powell fluid over an oscillatory stretching sheet embedded in a non-Darcy porous medium with nonlinear radiative heat flux and variable thermophysical properties. The fluid properties, namely the fluid viscosity, thermal conductivity, and mass diffusivity, are assumed to vary with temperature. It is assumed that the first-order chemical reaction with heat generation/absorption takes place in the flow. The flow domain is subject to uniform transverse magnetic field perpendicular to the stretching surface. The transformed flow equations are solved numerically using BSQLM on overlapping grids. The convergence properties and accuracy of the method are assessed. The proposed method is computationally efficient, and it gives stable and highly accurate results after few iterations and using few grid points in each subinterval. The improved accuracy rests upon the use of the overlapping grid, which produces sparse coefficient matrices that are easy to invert and have small condition numbers. The effects of physical parameters on the flow fields, local skin friction, the