In the global economy, plastics are considered a versatile and ubiquitous material. It can reach to marine ecosystems through diverse channels, such as road runoff, wastewater pathways, and improper waste management. Therefore, rapid mitigation and reduction are required for this ever-growing problem. The marine habitats are believed to be the highest emitters and absorbers of O2 and CO2 respectively. As such, every day, the prominence of managing the litter in the ocean is growing effectively and efficiently. One of the most significant challenges in oceanography is creating a comprehensive meshless algorithm to handle the mathematical representation of waste plastic management in the ocean. This research dedicates to studying the dynamics of waste plastic management model governed by a mathematical representation depending on three components viz. Waste plastic (W), Marine litter (M) and Recycling of debris (R), i.e., WMR model. In this regard, an unsupervised machine learning approach, namely Mexican Hat Wavelet Neural Network (MhWNN) refined by the efficient Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS), i.e., MhWNN-LBFGS model has been implemented for handling the non-linear phenomena of WMR models. Besides, the obtained solution is meshfree and compared with the state-of-art numerical result to establish the precision of the MhWNN-LBFGS model. Furthermore, different global statistical measures (MAPE, TIC, RMSE, and ENSE) have been computed at twenty testing points to validate the stability of the proposed algorithm.