This study presents an innovative inline metasurface design for selective wavelength transmission and focusing. When integrated into optical fibers, it improves the stability and compatibility with techniques like wavelength division multiplexing and phase modulation. Precise parameters, determined through analytical calculations and simulations, allow for the design of multifunctional lenses within the optical fiber platform. The numerical results demonstrate unmodulated transmission for specific wavelengths, while others exhibit standing wave focusing with a 0.67 μm beam radius and a 0.31 μm depth of focus. This technology holds promise for applications in quantum experiments, sensing, and optical communication.