To improve the hydrodynamic performance of the centrifugal pump, in present work a DOE technique Taguchi L9 orthogonal array experiment was carried out to optimize the impeller design parameters. The Navier-Stokes equations for three-dimensional steady flow is solved by computational fluid dynamics (CFD) code. The experimental test result of the original pump was compared with the data predicted from the numerical simulation. The comparison shows the closeness of predicted values with the experimental values, leads to validation of the numerical model under the specific range of operating conditions. Four geometric parameters of impeller were chosen as the variable factors viz. Number of blade, Impeller blade outlet angle, Impeller blade Inlet angle and Impeller blade wrapping angle. According to L9 orthogonal array, nine impellers were modelled using CAD modelling software and CFD analysis is carried out using ANSYS CFX. The impellers were equipped with the same volute during all the simulations. The modelled impellers were simulated by the same numerical method, which has been validated. The best parametric combination for higher efficiency is analysed finally. Results show the improvement of 4.25% higher efficiency compared with the original pump. The geometry selected for this model may be the best one to get the maximum efficiency for such pumps..