This article presents a numerical approach to investigate the transpiration cooling problems with coolant phase change within porous matrix. A new model is based on the coupling of the two-phase mixture model (TPMM) with the local thermal nonequilibrium (LTNE), and used to describe the liquid coolant phase change and heat exchange processes in this article. The effects of thermal conductivity, porosity, and sphere diameter of the porous matrix on the temperature and saturation distributions within the matrix are studied. The results indicate that an increase in the porosity or sphere diameter can lead to an area dilation of two-phase region and a rise of liquid temperature; whereas an increase in the thermal conductivity of the porous matrix results only in a rise of liquid temperature, but drops of solid temperature and temperature gradient on the hot surface. The influence of hot surface pressure on cooling effect is discussed by numerical simulations, and numerical results show that the effect of the transpiration cooling will be worse under higher pressure. The investigation also discovers an inverse phenomenon to the past investigations on the transpiration cooling without coolant phase change, namely in two-phase region, coolant temperature may be higher than solid temperature. This inversion can be captured only by the new LTNE-TPMM.