Smart materials can
respond to stimuli and adapt their responses
based on external cues from their environments. Such behavior requires
a way to transport energy efficiently and then convert it for use
in applications such as actuation, sensing, or signaling. Ultrasound
can carry energy safely and with low losses through complex and opaque
media. It can be localized to small regions of space and couple to
systems over a wide range of time scales. However, the same characteristics
that allow ultrasound to propagate efficiently through materials make
it difficult to convert acoustic energy into other useful forms. Recent
work across diverse fields has begun to address this challenge, demonstrating
ultrasonic effects that provide control over physical and chemical
systems with surprisingly high specificity. Here, we review recent
progress in ultrasound–matter interactions, focusing on effects
that can be incorporated as components in smart materials. These techniques
build on fundamental phenomena such as cavitation, microstreaming,
scattering, and acoustic radiation forces to enable capabilities such
as actuation, sensing, payload delivery, and the initiation of chemical
or biological processes. The diversity of emerging techniques holds
great promise for a wide range of smart capabilities supported by
ultrasound and poses interesting questions for further investigations.