The article is devoted to research of properties of the round convective air jet. The aim of this work is to establish universal graphical dependencies and empirical formulas for describing velocity and temperature fields over the entire range of development of round convective exhaust ventilation jet; development of an algorithm for solving the transcendent problem of determining the surface temperature of a heat source; introduction of velocity and temperature attenuation coefficients for round convective jet; visualization of its characteristics in the form of a 3D image; achieving reduction of metal consumption of the local exhaust ventilation system due to the overall optimization of the velocity and temperature fields of the round convective air jet.