Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Introduction:All information about a permutation, i.e. about an element of a symmetric groupS(n), is contained in a pair of Young tableaux mapped to it by RSK transformation. However, when considering an infinite sequence of natural or real numbers instead of a permutation, all information about it is contained only in an insertion infinite Young tableau. The connection between the first element of an infinite sequence of uniformly distributed random values and the limit angle of the recording tableau nerve was found in a recent work by D. Romik and P. Śniady. However, so far there were no massive numerical experiments devoted to the reconstruction of the beginning of such a sequence by the beginning of an insertion Young tableau. The reconstruction accuracy is very important, because even the value of the first element of a sequence can be determined only by an infinite tableau.Purpose:Developing a software package for operations on Young diagrams and Young tableaux, and its application for numerical experiments with large Young tableaux. Studying the properties of Knuth equivalence classes and dual Knuth equivalence classes on a set of permutations by numerical experiments using direct and inverse RSK transformation.Results:A software package is developed using the C ++ programming language. It includes functions for dealing with Young diagrams and tableaux. The dependence of values of the first element of a permutation obtained by inverse RSK transformation on the recording tableau nerve end coordinates was investigated by conducting massive numerical experiments. Standard deviations of these values were calculated for permutations of different sizes. We determined possible positions of 1 in permutations of the same Knuth equivalence class. It has been found out that the number of these positions does not exceed the number of corner boxes of the corresponding Young diagram. Experiments showed that for a fixed insertion tableau, the value of the first element of a permutation depends only on the recording tableau nerve end coordinates.
Introduction:All information about a permutation, i.e. about an element of a symmetric groupS(n), is contained in a pair of Young tableaux mapped to it by RSK transformation. However, when considering an infinite sequence of natural or real numbers instead of a permutation, all information about it is contained only in an insertion infinite Young tableau. The connection between the first element of an infinite sequence of uniformly distributed random values and the limit angle of the recording tableau nerve was found in a recent work by D. Romik and P. Śniady. However, so far there were no massive numerical experiments devoted to the reconstruction of the beginning of such a sequence by the beginning of an insertion Young tableau. The reconstruction accuracy is very important, because even the value of the first element of a sequence can be determined only by an infinite tableau.Purpose:Developing a software package for operations on Young diagrams and Young tableaux, and its application for numerical experiments with large Young tableaux. Studying the properties of Knuth equivalence classes and dual Knuth equivalence classes on a set of permutations by numerical experiments using direct and inverse RSK transformation.Results:A software package is developed using the C ++ programming language. It includes functions for dealing with Young diagrams and tableaux. The dependence of values of the first element of a permutation obtained by inverse RSK transformation on the recording tableau nerve end coordinates was investigated by conducting massive numerical experiments. Standard deviations of these values were calculated for permutations of different sizes. We determined possible positions of 1 in permutations of the same Knuth equivalence class. It has been found out that the number of these positions does not exceed the number of corner boxes of the corresponding Young diagram. Experiments showed that for a fixed insertion tableau, the value of the first element of a permutation depends only on the recording tableau nerve end coordinates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.