This work is a contribution to a better understanding of dual frequency discharge at atmospheric pressure. Based on experiments and numerical modeling, it is focused on radio frequency (5 MHz)low frequency (50 kHz) plane/plane dielectric barrier discharge in a Penning mixture (Ar-NH3). The discharge is in the α-RF mode, biased by a LF voltage having an amplitude ranging from 0 to 1300 V. When the LF amplitude increases, there is a threshold (around 600 V for a 2 mm gap) from which the light intensity (experiment) and the ionization level (modelling) drastically increase. In this work the physics of the RF-LF DBD below and above this threshold is studied. Depending on the respective RF and LF polarity, the net voltage applied to the gas is alternatively enhanced or reduced which induces an increase or a decrease of the ionization level. In all cases the ion drift to the cathode due to the LF voltage results in an ion loss and a production of secondary electrons. For a LF voltage amplitude lower than 600 V, the ions loss to the cathode is higher than the ions creation related to the secondary electrons. The consequence is a decrease of the plasma density. This density oscillates at a frequency equal to 2LF: it is maximum each time the LF voltage amplitude is equal to 0 and minimum when the LF voltage amplitude is maximum. For a LF voltage amplitude higher than 600 V, when the LF and RF polarity are the same, the secondary electrons emission is high enough to counterbalance the ion loss, to enhance the bulk ionization and the discharge becomes a γ-RF. The gas voltage is controlled by the dielectric