An acoustic sea glider has been developed for ambient sea noise measurement and target detection through the deployment of an acoustic vector sensor (AVS). The glider was designed with three cabins connected in sequence and it can dive to depths exceeding 1200m. The AVS fixed on the glider measure acoustic pressure and particle velocities related to undersea noise, and the inner attitude sensors can effectively eliminate the estimation deviation of the direction of arrival. The inherent self-noises of the acoustic sea glider and AVS are presented respectively in respect to the Knudsen spectra of sea noise. Sea trial results indicate that the AVS could work well for undersea noise measurement when the glider is smooth sliding, and the target azimuth estimated by AVS after correction is remarkably consistent with the values measured by the GPS, and direction-finding errors are less than 10 degrees. The research in this paper shows that the acoustic sea glider is able to undertake tasks such as a wide range of underwater acoustic measurement and detection.