Thrust bearings have been the object of a considerable amount of research for many years. The attention that these bearings have received is primarily due to the important role they play in the design and operation of heavy equipment. The objectives of this work are to examine the effect of translation and bearing geometry, such as recess depth and width, on the performance of circular thrust bearings. A closed-form solution is obtained for laminar viscous flow that extends prior results which generally focus on stationary or hydrostatic bearings. Earlier studies have examined specific aspects of translation, such as recirculation in the recess, but the current study is a comprehensive analysis in the case of laminar flow. The analysis reveals a single dimensionless parameter that describes the influence of the bearing speed. Expressions that predict the load-carrying capacity of the bearing, the tilting moment exerted on the bearing, the volumetric leakage of the bearing, and power due to lubricant injection and translation are obtained. Streamline patterns under the bearing show conditions at higher speeds when the injected lubricant does not penetrate underneath the entire bearing surface.