Over the past decade, the integration of desiccant technology with evaporative cooling methods has proven to be highly effective and efficient in providing comfortable indoor environments. The performance of desiccant-based direct evaporative cooling (DEC) systems is strongly influenced by environmental conditions, and their output behavior varies across multiple climatic zones. It is not easy to assess the system performance in numerous climatic zones as it is a time-consuming process. The current study focuses on determining the feasibility of a solid desiccant integrated with a direct evaporative cooler (SDI-DEC) for three different climatic zones of Pakistan: Lahore (hot and humid), Islamabad (hot and semi-humid) and Karachi (moderate and humid). To serve this purpose, a specially designed controlled climate chamber with an integrated air handling unit (AHU) was installed to create multiple environmental conditions artificially. It could also provide global climatic conditions under temperature and absolute humidity ranges of 10 °C to 50 °C and 10 g/kg to 20 g/kg, respectively. The weather conditions of the selected cities were artificially generated in the climate chamber. Based on different operating conditions, such as inlet air temperature, humidity and regeneration temperature, the performance of the system was estimated using performance indicators like COP, dehumidification effectiveness, solar fraction and supply air conditions. Results showed that the maximum temperature achieved from solar collectors was about 70 °C from collectors with an area of 9.5 m2. Moreover, the observations showed that when the regeneration temperature was increased from 60 °C to 80 °C, the COP of the system decreased about 41% in a moderate and humid climate, 28% in a hot and semi-humid environment and 23% in a hot and humid climate. The results revealed that an SDI-DEC system has the potential to overcome the humidity and cooling loads of the multiple climatic scenarios of Pakistan.