The development of an in-house computer program for determining the motions and loads of advancing ships through sea waves in the frequency domain, is described in this paper. The code is based on the potential flow formulation and originates from a double-body code enhanced with the regular part of the velocity potential computed using the pulsing source Green function. The code is fully developed in C++ language with extensive use of the object-oriented paradigm. The code is capable of estimating the excitation and inertial radiation loads or arbitrary incoming wave frequencies and incidence angles. The hydrodynamic responses such as hydrodynamic coefficients, ship motions, the vertical shear force and the vertical bending moment are estimated. A benchmark container ship and an LNG carrier are selected for testing and validating the computer code. The obtained results are compared with the available experimental data which demonstrate the acceptable compliance for the zero speed whereas there are some discrepancies over the range of frequencies for the advancing ship in different heading angles.