In order to develop a new generation of intelligent satellites, fast-response bipropellant thrusters are required to work in minimum impulse mode without limitation. When a valve is opening, the fluctuation affects downstream spray atomization at the injector, which determines the thruster’s impulse performance, involving combustion efficiency and impulse repeatability. Accordingly, the spray atomization under impulse working condition was investigated to optimize the thruster’s dynamic response. The effects of propellant property, switch speed, valve stroke, and throttle orifice layout are respectively compared in simulation cases using OpenFOAM. The fluctuating flowrate caused by valve opening was simulated and then used as boundary conditions for downstream spray. Among these factors, orifice layout plays the most significant roles in transient spray development. Compared with MMH spray, NTO spray from outer swirl injector is more sensitive to upstream fluctuation. When the upstream flowrate stabilizes faster, the atomization stability can also be enhanced, thereby improving the impulse repeatability of thrusters in combustion. This experimental result was in good agreement with the simulation, thereby showing that only when atomization of MMH spray and NTO spray both develop into a steady state within 5 ms after valve opening can the impulse performance be reliably achieved.