Thermal control (passive and active) is a non-destructive testing method. During passive thermal control, the test object is characterized by a temperature field formed during its operation. In active thermal control, the test object is additionally thermally stimulated. This technique is widely used in various areas of construction, energy, mechanical engineering, transport. This paper proposes a variant of active thermal non-destructive assessment of the thermal conductivity coefficient of building materials and products on the example of a fragment of a building structure made of silicate bricks. The test object is subjected to thermal stimulation by an external source of thermal energy before reaching a steady-state thermal regime. Thermography of the test object surfaces is carried out. The average integral temperatures of surfaces or individual sections of the test object are calculated. The coefficient of thermal conductivity of the test object is determined, which is used to calculate its thermal resistance (resistance to heat transfer). After that, the coefficient of heat transfer is calculated. The method was implemented in laboratory conditions. It can be used in natural and operational conditions for accurate and quick determination of the key thermophysical properties of building materials and products.