Hydrophilic-hydrophobic hybrid surfaces are developed to solve the flow and heat transfer performance contradiction. However, hybrid surfaces often have micro- or nano-scale featured sizes and are used in phase change heat transfer because hydrophilic regions contribute to droplet nucleation, and hydrophobic regions contribute to bubble nucleation. In this study, large eddy simulation is used to investigate the forced convection on macroscopic hydrophilic-hydrophobic hybrid surfaces where only the surface local wettability is changed. Three hybrid surfaces with different hydrophilic-hydrophobic ratios and two homogeneous wettability surfaces are designed, and representative flow Reynolds numbers of 4000, 6000, 10 000, and 40 000 are explored to achieve different turbulent styles. The transient parameters of kinematics, vorticity, and boundary layer are analyzed to clarify the mechanism of turbulence change and eddy generation and explain the causes of variations in flow and heat transfer performances. It proves that macroscopic hydrophilic-hydrophobic hybrid surfaces are suitable for forced convection due to the drag reduction on hydrophobic regions, backflows at hydrophilic-hydrophobic interfaces, and eddies at hydrophobic-hydrophilic interfaces, which can enhance the internal disturbance and harmonize the flow and heat transfer performances. The mechanism has a profound significance in broadening the application of hydrophilic-hydrophobic hybrid surfaces and designing the arrangement of hydrophobic regions.