This paper presents a double-layer Trombe wall assisted by a temperature-controlled direct current (DC) fan. THERB for HAM, a dynamic thermal load calculation software, was used to estimate the heating ability of a double-layer Trombe wall for an office building. We designed a new double-layer Trombe wall that has two ventilated air cavities installed on the south facade of the office building, and a pipe with a temperature-controlled DC fan used to control thermo-circulation. The office building was located in Kitakyushu, Fukuoka, Japan. The temperature of the ventilated air cavity of the double-layer Trombe wall and the indoor temperature were simulated. It was more efficient for the DC fan to start when the ventilated air cavity temperature was 19 • C and the operative temperature of indoor was maintained at 20 • C. The results showed that the double-layer Trombe wall with a temperature-controlled DC fan can reduce yearly heating needs by nearly 0.6 kWh/m 3 and improve the performance of a double-layer Trombe wall up to 5.6% (22.7% in November, 8.56% in December, 1.04% in January, 3.77% in February, and 3.89% in March), compared to the double-layer Trombe wall without an air supply. The ventilated (all day) double-layer Trombe wall performed better than the unventilated double-layer Trombe wall in November, December, February, and March. Thus, the potential of a double-layer Trombe wall can be improved with the assistance of a temperature-controlled DC fan.