As technology advances, so does digital farming, revolutionizing the industry. Drones, sprayers equipped with GPS and other sensors, combine harvesters, and other machinery can greatly improve agricultural productivity. This paper studies the impact of the straw baler screw conveyor on the efficiency of the baler. Via theoretical analysis, GA—BP (Genetic Algorithm—Back Propagation) simulation, and comparative experiments, the structural parameters and rotational speed of the spiral shaft in the screw conveying device are optimized. In this paper, we analyze the force and velocity components acting on the straw, give the design principles for the screw’s conveying parameters under the premise of ensuring maximum conveying capacity and minimum power consumption, and determine the optimal design variables, objective functions, and constraints according to the specific optimization problem; we establish a specific mathematical model, and introduce algorithm optimization for nonlinear problems with many variables and large amounts of calculations. In MATLAB, an optimization calculation and analysis were performed. The optimization results of the traditional BP (Back Propagation) and GA—BP were compared. It was proven that GA—BP could effectively compensate for the deficiencies of the BP neural network and substantially enhance the model’s accuracy. Through an analysis of the optimization results, the conclusion of attaining the optimization objective was drawn. Specifically, when the outer diameter of the spiral for screw conveyance in the straw baler was D=320 mm, the pitch was S=200 mm, and the rotational speed of the pickup shaft was n=138 r/min, the straw baler could achieve the maximum conveying capacity and the minimum power consumption. At this moment, the power consumption was P=0.079 kW, and the conveying capacity was Qm=23.98 t/h. Subsequently, the optimization results were contrasted with those of other mainstream domestic models, and a comparative experiment was conducted. The experimental results indicated that the model’s prediction results were reliable and exhibited higher efficiency compared to other combinations. The results could provide a reference for the research on screw conveyance of balers.