Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The influence of surrounding fluid on a large array of oscillators is important to study for applications in fields such as medicine, biology, and atomic force microscopy. In the present study, we investigate a large array of cantilever beams oscillating in an unbounded fluid to better understand the fluid dynamic behavior. The two-dimensional boundary integral method is applied to analyze a large array of cantilever oscillators using an analytical solution approach for the unsteady Stokes and continuity equations. We analyze array sizes from 5 to 50 beams by comparing hydrodynamic transverse force and velocity profiles for two different velocity configurations. Including the interactions of neighbor and non-neighbor members leads to distinct array effects. With an increase in the number of oscillators in an array, the array effect influences the overall dynamics. Furthermore, to justify the influence of an array effect, the hydrodynamic loading is compared to the same and varying array surface area of different array sizes. Our analysis and new findings strengthen our hypothesis that the predictions of existing knowledge obtained from small-size arrays and coupled oscillators cannot readily inform dynamic predictions of large-size arrays. The underlying reason being the additional array effect(s) which are not present in a small-size array. The novelty of this paper is the ability to model such large arrays and investigate the array effect in an unbounded fluid.
The influence of surrounding fluid on a large array of oscillators is important to study for applications in fields such as medicine, biology, and atomic force microscopy. In the present study, we investigate a large array of cantilever beams oscillating in an unbounded fluid to better understand the fluid dynamic behavior. The two-dimensional boundary integral method is applied to analyze a large array of cantilever oscillators using an analytical solution approach for the unsteady Stokes and continuity equations. We analyze array sizes from 5 to 50 beams by comparing hydrodynamic transverse force and velocity profiles for two different velocity configurations. Including the interactions of neighbor and non-neighbor members leads to distinct array effects. With an increase in the number of oscillators in an array, the array effect influences the overall dynamics. Furthermore, to justify the influence of an array effect, the hydrodynamic loading is compared to the same and varying array surface area of different array sizes. Our analysis and new findings strengthen our hypothesis that the predictions of existing knowledge obtained from small-size arrays and coupled oscillators cannot readily inform dynamic predictions of large-size arrays. The underlying reason being the additional array effect(s) which are not present in a small-size array. The novelty of this paper is the ability to model such large arrays and investigate the array effect in an unbounded fluid.
In this work, we present a comprehensive experimental study on the problem of harmonic oscillations of rigid plates with H-shaped cross sections submerged in a quiescent, Newtonian, incompressible, viscous fluid environment. Motivated by recent results on the minimization of hydrodynamic damping for transversely oscillating flat plates, we conduct a detailed qualitative and quantitative experimental investigation of the flow physics created by the presence of the flanges, that is, the vertical segments in the plate cross section. Specifically, the main goal is to elucidate the effect of flange size on various aspects of fluid–structure interaction, by primarily investigating the dynamics of vortex shedding and convection. We perform particle image velocimetry experiments over a broad range of oscillation amplitudes, frequencies, and flange size-to-width ratios by leveraging the identification of pathlines, vortex shedding and dynamics, distinctive hydrodynamic regimes, and steady streaming. The fundamental contributions of this work include novel hydrodynamic regime phase diagrams demonstrating the effect of flange ratio on regime transitions, and in the investigation of their relation to qualitatively distinct patterns of vortex–vortex and vortex–structure interactions. Finally, we discuss steady streaming, identifying primary, and secondary structures as a function of the governing parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.