Classical sexual selection theory assumes that the reproductive success of females is primarily limited by the resources available for egg production rather than by the number of mating partners. However, there is now accumulating evidence that multiple mating can entail fitness costs or benefits for females. In this study we investigated the effect of polyandry (i.e., the mating with different mating partners) and food availability on the reproductive output of the female sex function in an outcrossing simultaneous hermaphrodite, the free-living flatworm Macrostomum lignano. We exposed virgin worms to different group sizes, a treatment that has previously been shown to affect the level of polyandry in this species. Moreover, we manipulated the food availability throughout the subsequent egg laying period, during which the worms were kept in isolation. The number of offspring produced was used as an estimate of female fecundity. We found that food availability, but not group size, had a significant effect on female fecundity. Additionally, female fecundity was positively correlated with the number of stored sperm in the female sperm-storage organ at the time of isolation, but it was not correlated with body or ovary size of the worms. Our results suggest that female fecundity in M. lignano is primarily determined by the resources available for egg production, and not by the level of polyandry, confirming classic sexual selection theory for simultaneous hermaphrodites.