CAD software is a daily tool in ship design offices and shipyards, and every software uses NURBS or B-splines curves and surfaces as common foundations. The CAD tools of today are not static software products and most of them now include parametric design modules, which enable users to change the shape of an object based on its key geometric feature parameters with the use of sliders or equivalent controls. Although B-spline techniques are commonly applied to the representation of the ship hull curves and surfaces, the parametric deformation of the hull surfaces based on geometric parameters is less used. This paper presents a methodology to define the parametric definition of a ship hull with the use of a standard and non-specialized CAD software that is of common use in the ship design offices and universities: Rhinoceros. The presented parametric design methodology will use specific ship hull parameters or feature parameters with a clear geometric meaning, such as displacement, waterplane area, LCB, and LCF, together with the properties of the B-spline curves and the power of Grasshopper, the parametric design tool inside Rhinoceros, to create parametric ship hulls.