Crystallographic disorder, whether static or dynamic, can be detrimental to the physical and chemical stability, ease of crystallization and dissolution rate of an active pharmaceutical ingredient. Disorder can result in a loss of manufacturing control leading to batch-to-batch variability and can lengthen the process of structural characterization. The range of NMR active nuclei makes solid-state NMR a unique technique for gaining nucleus-specific information about crystallographic disorder. Here, we explore the use of high-field 35 Cl solid-state NMR at 23.5 T to characterize both static and dynamic crystallographic disorder: specifically, dynamic disorder occurring in duloxetine hydrochloride (1), static disorder in promethazine hydrochloride (2), and trifluoperazine dihydrochloride (3). In all structures, the presence of crystallographic disorder was confirmed by 13 C cross-polarization magic-angle spinning (CPMAS) NMR and supported by GIPAW-DFT calculations, and in the case of 3, 1 H solid-state NMR provided additional confirmation. Applying 35 Cl solid-state NMR to these compounds, we show that higher magnetic fields are beneficial for resolving the crystallographic disorder in 1 and 3, while broad spectral features were observed in 2 even at higher fields. Combining the data obtained from 1 H, 13 C, and 35 Cl NMR, we show that 3 exhibits a unique case of disorder involving the + NÀ H hydrogen positions of the piperazinium ring, driving the chloride anions to occupy three distinct sites.