Litter accumulation can strongly influence plants' natural regeneration via both physical and chemical mechanisms, but the relative influence of each mechanism on seedling establishment remains to be elucidated. Chinese fir (Cunninghamia lanceolata) is one of the most important commercial plantations in southern China, but its natural regeneration is poor, possibly due to its thick leaf litter accumulation. We used natural and plastic litter to study the effects of Chinese fir litter on its own seedling emergence and early growth, as well as to assess whether the effect is physical or chemical in nature. Results showed that high litter amount (800 g·m −2 ) significantly reduced seedling emergence and the survival rate for both natural and plastic litter. Low litter amount (200 g·m −2 ) exerted a slightly positive effect on root mass, leaf mass, and total mass, while high litter amount significantly inhibited root mass, leaf mass, and total mass for both natural and plastic litter. Root-mass ratio was significantly lower, and leaf-mass ratio was significantly greater under high litter cover than under control for both natural and plastic litter. Although the root/shoot ratio decreased with increasing litter amount, such effect was only significant for high litter treatment for both natural and plastic litter. Seedling robustness (aboveground biomass divided by seedling height) decreased with increasing litter amount, with high litter treatment generating the least robust seedlings. Because plastic and natural litter did not differ in their effects on seedling emergence and growth, the litter layer's short-term influence is primarily physical. These data indicated that as litter cover increased, the initial slightly positive effects on seedling emergence and early growth could shift to inhibitory effects. Furthermore, to penetrate the thick litter layer, Chinese fir seedlings allocated more resources towards stems and aboveground growth at the expense of their roots. This study provided experimental evidence of litter amount as a key ecological factor affecting seedling development and subsequent natural regeneration of Chinese fir.